Campbell Scientific’s IRGASON® fully integrates the open-path analyzer and sonic anemometer. Designed specifically for eddy-covariance carbon and water flux measurements, the patented design is easier to install and use than separate sensors and provides increased measurement accuracy. The IRGASON® simultaneously measures absolute carbon dioxide and water vapor, air temperature, barometric pressure, three-dimensional wind speed, and sonic air temperature. U.S. patent D680455
For more information about the benefits of having a colocated measurement, refer to the poster "Improved eddy flux measurements by open-path gas analyzer and sonic anemometer co-location."
Read MoreThe IRGASON® has the following outputs:
Patent | U.S. Patent No. D680455 |
Operating Temperature Range | -30° to +50°C |
Calibrated Pressure Range | 70 to 106 kPa |
Input Voltage Range | 10 to 16 Vdc |
Power | 5 W (steady state and power up) at 25°C |
Measurement Rate | 60 Hz |
Output Bandwidth | 5, 10, 12.5, or 20 Hz (user-programmable) |
Output Options | SDM, RS-485, USB, analog (CO2 and H2O only) |
Auxiliary Inputs | Air temperature and pressure |
Warranty | 3 years or 17,500 hours of operation (whichever comes first) |
Cable Length | 3 m (10 ft) from IRGASON® to EC100 |
Weight |
|
Gas Analyzer |
|
Path Length |
15.37 cm (6.05 in.) A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. |
Gas Analyzer - CO2 Performance |
|
-NOTE- | A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. |
Accuracy |
|
Precision RMS (maximum) |
0.2 mg/m3 (0.15 μmol/mol) Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO2, 12°C dewpoint, and 20 Hz bandwidth. |
Calibrated Range | 0 to 1,000 μmol/mol (0 to 3,000 μmol/mol available upon request.) |
Zero Drift with Temperature (maximum) | ±0.55 mg/m3/°C (±0.3 μmol/mol/°C) |
Gain Drift with Temperature (maximum) | ±0.1% of reading/°C |
Cross Sensitivity (maximum) | ±1.1 x 10-4 mol CO2/mol H2O |
Gas Analyzer - H2O Performance |
|
-NOTE- | A temperature of 20°C and pressure of 101.325 kPa was used to convert mass density to concentration. |
Accuracy |
|
Precision RMS (maximum) |
0.004 g/m3 (0.006 mmol/mol) Nominal conditions for precision verification test: 25°C, 86 kPa, 400 μmol/mol CO2, 12°C dewpoint, and 20 Hz bandwidth. |
Calibrated Range | 0 to 72 mmol/mol (38°C dewpoint) |
Zero Drift with Temperature (maximum) | ±0.037 g/m3/°C (±0.05 mmol/mol/°C) |
Gain Drift with Temperature (maximum) | ±0.3% of reading/°C |
Cross Sensitivity (maximum) | ±0.1 mol H2O/mol CO2 |
Sonic Anemometer - Accuracy |
|
-NOTE- | The accuracy specification for the sonic anemometer is for wind speeds < 30 m s-1 and wind angles between ±170°. |
Offset Error |
|
Gain Error |
|
Measurement Precision RMS |
|
Speed of Sound | Determined from 3 acoustic paths (corrected for crosswind effects) |
Rain | Innovative signal processing and transducer wicks considerably improve performance of the anemometer during precipitation events. |
Basic Barometer (option -BB) |
|
Total Accuracy |
|
Measurement Rate | 10 Hz |
Enhanced Barometer (option -EB) |
|
Manufacturer | Vaisala PTB110 |
Total Accuracy | ±0.15 kPa (-30° to +50°C) |
Measurement Rate | 1 Hz |
Ambient Temperature |
|
Manufacturer | BetaTherm 100K6A1IA |
Total Accuracy | ±0.15°C (-30° to +50°C) |
EC100 ingress protection | IP65 |
CR6 datalogger program for Campbell open-path eddy-covariance systems.
EC100 Operating System.
Watch the Video Tutorial: Updating the EC100 Operating System.
EC100-Series Support Software.
A software utility used to download operating systems and set up Campbell Scientific hardware. Also will update PakBus Graph and the Network Planner if they have been installed previously by another Campbell Scientific software package.
Supported Operating Systems:
Windows 11 or 10 (Both 32 and 64 bit)
Number of FAQs related to IRGASON: 21
Expand AllCollapse All
The molecular sieve is a non-hazardous material that can be shipped to any country.
The molecular sieve has been demonstrated here by our engineering department to be effective at removing CO2 and H2O from the air sample. The change was made for two reasons:
The molecular sieve is a direct replacement for the old magnesium perchlorate bottles. The molecular sieve may be used for any Campbell Scientific analyzer that used the old bottles.
For greatest accuracy, Campbell Scientific recommends that a zero and a span be done on the EC150 or IRGASON. However, if a span gas is difficult to obtain, at the minimum, perform a zero on the analyzer. Performing a zero will correct the majority of drift experienced by the analyzer. Follow the zero procedure in the analyzer’s manual for details.
The bottles of sieve for drop-in replacement contain the pellets and a membrane on top. The membrane is necessary to keep the pellets contained while allowing gas to pass over the zeolite. The bottle has the same footprint as the old magnesium perchlorate bottles. The amount in each bottle is listed on the bottle. The amount of sieve needed for each analyzer is the following:
The factory calibration accounts for CO2 and H2O signal strengths down to 0.7. Therefore, to ensure quality data, windows should be cleaned before signal strengths drop below 0.7.
Differences between the sonic calculated temperature and the air temperature measured by a more traditional sensor do not necessarily indicate a problem. Sonic anemometers, because of their high sensitivities to sonic geometry and transducer response time, do not typically measure absolute temperature as accurately as traditional temperature probes. Even very small changes in geometry can lead to errors in sonic temperature because sonic temperature is proportional to the square of any error in the distance between sonic transducers. As an example, a change of only 200 micrometers in sonic path length at room temperature yields a 1°C change in measured sonic temperature.
Even though sonic anemometers are generally not recommended for measuring absolute temperature, they excel at measuring fast temperature fluctuations, which are needed for eddy-covariance calculations (sensible heat flux). Furthermore, the error in sonic temperature in most cases can be regarded as an offset after sonic temperature has been corrected for humidity, and therefore, it will not have an effect on the covariance calculation. Nevertheless, if a user desires to calibrate the sonic temperature to account for this offset, this can be done using the temperature reading from a collocated temperature probe, such as the EC150 or IRGASON temperature probe.
Selecting which barometer to use is the choice of the user. There is a direct correlation between the accuracy level of the barometer and its cost.
When choosing a barometer, consider the effect of pressure accuracy on flux calculations. For sensible heat flux, the barometric pressure is used to calculate the density of air, which directly scales the sensible heat flux. Therefore, if the barometric pressure measurement is off by 1%, then the sensible heat flux will be off by 1%.
For CO2 flux, the EC150 and IRGASON report CO2 as density. Thus, the barometric pressure is not used to directly calculate the flux. However, error in pressure measurements could cause an error in CO2 flux resulting from a CO2 span. During the span procedure, the user enters the “true CO2 value” as a CO2 concentration, which is later converted to density using the barometric pressure. Consequently, the error in CO2 measurements is directly proportional to the error in the barometric pressure measurement.
Yes. A fine-wire thermocouple, such as a FW05, can be used.
The minimum height for the IRGASON or EC150 should be approximately 2 m. Sensor placement below that height may result in a significant loss in frequency response. The maximum height depends on the available upwind fetch or footprint area. As a general guideline for unstable boundary layer conditions, the height of the sensor should be less than the distance from the sensor to the outermost edge of the footprint area divided by one hundred. For example, if there is 500 m of available upwind fetch, the IRGASON or EC150 should not exceed a height of 5 m. Note that for neutral and stable conditions, the footprint area will grow.