The 109 is a rugged, accurate probe that measures air, soil, and water temperature for a variety of applications. It consists of a thermistor encapsulated in an epoxy-filled aluminum housing. The housing protects the thermistor, allowing the 109 to be buried or submerged. The 109 measures from -50° to +70°C.
Read MoreWhen exposed to sunlight, the 109 should be housed in a 41303-5A, 41303-5B, or RAD06 6-plate radiation shield. The louvered construction of these radiation shields allows air to pass freely through the shield, thereby keeping the sensor at or near ambient temperature. The shields’ white color reflects solar radiation
The RAD06 uses a double-louvered design that offers improved sensor protection from driving rain, snow, and insect intrusion, and it has lower self-heating in bright sunlight combined with higher temperatures (> 24°C [~75°F]) and low wind speeds (< 2 m s-1 [~4.5 mph]), giving a better measurement.
The 41303-5A and RAD06 attach to a crossarm, mast, or user-supplied pipe with a 2.5 to 5.3 cm (1.0 in to 2.1 in) outer diameter.
The 41303-5B attaches to a CM500-series pole or a user-supplied pole with a 5.1 cm (2.4 in) outer diameter.
The sensor can be submerged to 15 m (50 ft) or 21 psi. The 109 is not weighted, and therefore the installer should either add a weighting system or secure the sensor to a fixed, submerged object, such as a piling.
The 109 is suitable for shallow burial only. Placement of the sensor’s cable inside a rugged conduit may be advisable for long cable runs—especially in locations subject to digging, mowing, traffic, use of power tools, or lightning strikes.
Output | Analog |
Operating Temperature Range | -50° to +70°C |
Sensor Description | Measurement Specialties™ 10K3A1iA Thermistor |
Tolerance | ±0.2°C (over 0° to 70°C range) |
Temperature Measurement Range | -50° to +70°C |
Steinhart-Hart Equation Error | ≤ 0.03°C (-50° to +70°C) |
Interchangeability Error | ±0.1°C (over 0° to 70°C range increasing to ±0.5°C at -50°C) |
Time Constant in Air | 30 to 60 s (in a wind speed of 5 m s-1) |
Maximum Submergence | 15 m (50 ft) |
Maximum Cable Length | 305 m (1000 ft) |
Probe Length | 10.4 cm (4.1 in.) |
Probe Diameter | 0.76 cm (0.3 in.) |
Weight | 136 g (5 oz) with 3.05-m (10-ft) cable |
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR300 | ||
CR3000 (retired) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) |
The 109 was designed specifically for our CR200(X)-series and CR300-series dataloggers but is suitable for other compatible dataloggers.
All compatible CRBasic dataloggers contain the Therm109 instruction for measuring the 109 probe. Programming is more complicated for older Edlog dataloggers because they must use generic measurement instructions.
When exposed to sunlight, the 109 should be housed in a 41303-5A, 41303-5B, or RAD06 6-plate radiation shield. The louvered construction of these radiation shields allows air to pass freely through the shield, thereby keeping the sensor at or near ambient temperature. The shields’ white color reflects solar radiation.
The RAD06 uses a double-louvered design that offers improved sensor protection from driving rain, snow, insect intrusion and has lower self-heating in bright sunlight combined with higher temperatures (> 24°C [~75°F]) and low wind speeds (< 2 m/s [~4.5 mph]), giving a better measurement.
The 41303-5A and RAD06 attach to a crossarm, mast, or user-supplied pipe with a 2.5 to 5.3 cm (1.0 in to 2.1 in.) outer diameter. The 41303-5B attaches to a CM500-series pole or a user-supplied pole with a 5.1 cm (2.4 in.) outer diameter.
The 109 is suitable for shallow burial only. Placement of the sensor’s cable inside a rugged conduit may be advisable for long cable runs—especially in locations subject to digging, mowing, traffic, use of power tools, or lightning strikes.
The sensor can be submerged to 15 m (50 ft) or 21 psi. The 109 is not weighted; therefore, the installer should either add a weighting system or secure the sensor to a fixed, submerged object, such as a piling.
Number of FAQs related to 109-L: 6
Expand AllCollapse All
The thermistor is located approximately 3 mm (0.125 in.) back from the probe tip.
To incorporate a sensor that is compatible with wireless sensor interfaces into a wireless network, a CWS900-series wireless sensor interface is needed, as well as an A205 CWS-to-PC interface to configure it.
Note the difference between calibration and a field check. Calibration cannot be done in the field, as it requires an experienced technician and specialized equipment.
Field checks of measurements can be done to determine if the data make sense with the real-world conditions. Follow these steps to field check a sensor:
Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:
If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field on the product’s Ordering tab. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.
If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.
The sensor/probe consists of a non-linear thermistor configured with a precision resistor in a half-bridge circuit, as shown in the product’s manual:
To measure the sensor/probe, the measurement device has to provide a precision excitation voltage (Campbell Scientific dataloggers use 2000 mV), measure the voltage across the precision resistor, determine the thermistor resistance (Ohm's law), and convert the resistance to temperature using the Steinhart-Hart equation.
The Steinhart-Hart equation is 1/T = A + Bln(R) + C(ln(R))3 where:
For the 107-L, 107-LC, 108-L, and 108-LC, the following are the coefficients for the Steinhart-Hart equation:
For the 109-L, the following are the coefficients for the Steinhart-Hart equation:
Many Campbell Scientific sensors are available with different cable termination options. These options include the following:
Note: The availability of cable termination options varies by sensor. For example, sensors may have none, two, or several options to choose from. If a desired option is not listed for a specific sensor, contact an application engineer at Campbell Scientific for assistance.