The LWS, manufactured by METER Environment, can detect small amounts of water or ice on the sensor surface for leaf wetness applications. Because the LWS measures the dielectric constant of the sensor’s upper surface, it can detect the presence of water or ice anywhere on the sensor’s surface.
The LWS is designed to be deployed either in the canopy or on a weather station mast. Two holes in the non-sensing portion of the sensor body are provided for attaching the sensor to a pole or branch via twist ties or with 4-40 bolts.
Note: The LWS was previously ordered as the LWS-L.
Read MoreThe LWS measures the dielectric constant of the sensor’s upper surface. This method allows the sensor to detect the presence of water or ice anywhere on the sensor’s surface.
Measurement Description | Dry, frosted, wet |
Signal Type/Output | Analog voltage |
Measurement Time | 10 ms |
Power | 2.5 Vdc @ 2 mA to 5 Vdc @ 7 mA |
Output | 250 to 1500 mV (millivolt reading relates to moisture state) |
Operating Temperature Range | -40° to +60°C |
Life Expectancy | 2+ years (continuous use) |
Painting | Does not require painting. |
Dimensions | 12.0 x 5.8 x 0.8 cm (4.7 x 2.3 x 0.3 in.) |
Weight | 0.14 kg (5 oz) with 4.57 m (15 ft) cable |
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
CR1000 (retired) | ||
CR1000X | ||
CR300 | ||
CR3000 (retired) | ||
CR310 | ||
CR350 | ||
CR6 | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR800 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) | ||
CR850 (retired) |
The LWS is designed to be deployed either in the canopy or on a weather station mast. Two holes in the non-sensing portion of the sensor body are provided for attaching the sensor to a pole or branch via twist ties or with 4-40 bolts.
Number of FAQs related to LWS: 7
Expand AllCollapse All
To incorporate a sensor that is compatible with wireless sensor interfaces into a wireless network, a CWS900-series wireless sensor interface is needed, as well as an A205 CWS-to-PC interface to configure it.
Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:
If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field on the product’s Ordering tab. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.
If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.
Many Campbell Scientific sensors are available with different cable termination options. These options include the following:
Note: The availability of cable termination options varies by sensor. For example, sensors may have none, two, or several options to choose from. If a desired option is not listed for a specific sensor, contact an application engineer at Campbell Scientific for assistance.
Both leaf wetness sensors are compatible with all Campbell Scientific dataloggers. However, the 237-L is often used in large legacy networks that rely on the 237-L for data continuity. The 237-L does require painting and field calibration, whereas the LWS-L does not.