Services Available |
---|
The CR9000X is a large, modular multiprocessor system that provides precision measurement capabilities in a rugged, battery-operated package. It consists of a base system and a chassis with slots for up to nine user-selected I/O modules. The CR9000X is our fastest datalogger, with a measurement rate of 100,000 Hz, making it ideal for rapid sampling applications.
CLICK HERE to see the entire list of available I/O modules for the CR9000X and CR9000XC.
Campbell Scientific also offers the CR9000XC, a compact version, that accepts up to five I/O modules.
Read MoreThe CR9000X's base system includes a CR9032 CPU module, CR9041 A/D module, CR9011 power supply module, and 128-MB SDRAM memory for program and data storage. The CR9000X's internal battery has a 14-Ahr capacity.
A mix of I/O modules is selected based on the measurements required for the application. Campbell Scientific offers a large variety of modules. Individual I/O modules can be swapped out, allowing the system to be reconfigured if requirements change.
I/O modules whose model numbers end in an E (e.g., CR9051E, CR9055E) and the CR9052DC include an easy connector module. Easy connector modules allow sensor wiring to remain connected while the input module’s measurement electronics and the rest of the datalogger system are used elsewhere.
The CR9000X has a choice of enclosure. The environmental enclosure is designed for field applications, where the enclosure will be exposed to the elements. The lab enclosure is for applications where the CR9000X will reside inside a building.
CR9000X versus CR9000In August 2004, the CR9000X replaced the CR9000. The CR9000 and CR9000X dataloggers differ in their CPU Module; the CR9000 datalogger uses the CR9031 and the CR9000X data logger uses the CR9032. The CR9032 CPU module supports a measurement rate of up to 100,000 Hz, provides a 180 MHz clock speed, and adds a built-in RS-232 port, 10baseT/100baseT port, CS I/O port, and PC-card slot. The built-in ports enable communication without using the special interfaces (e.g., PLA100, TL925, NL105) that were required for the retired CR9000 datalogger. The PC-card slot allows the CR9000X to store data on a Type I, Type II, or Type III PCMCIA card, or on a CompactFlash® card if an adapter is used. A CR9000 may be upgraded to a CR9000X by replacing the CR9031 CPU module with the CR9032 CPU module. |
-NOTE- |
|
Operating Temperature Range |
|
Analog Inputs | 28 single-ended or 14 differential per CR9050, CR9051E, or CR9055(E) module |
Pulse Counters | 12 per CR9071 module |
Communications Ports |
|
Switched 12 Volt | 1 terminal |
Digital I/O |
|
Analog Voltage Accuracy | ±(0.07% of reading + 4 A/D counts), -25° to +50°C |
ADC | 16-bit |
Power Requirements | 9.6 to 16 Vdc |
Communication Protocols | SDM |
Warranty | 3 years |
Dimensions |
|
Weight |
|
Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.
Product | Compatible | Note |
---|---|---|
LoggerNet | Version 2.0 or higher | |
PC200 (retired) | ||
PC400 | Version 1.0 or higher | |
RTDAQ | Version 1.0 or higher | |
Short Cut | ||
VISUALWEATHER | Version 2.0 or higher |
Customers can add CR9000X dataloggers to networks containing the older CR9000 or CR9000C dataloggers. I/O modules other than the CR9080 can be used with either the CR9000 or CR9000X. CR9000 communication interfaces (i.e., NL105, BLC100, TL925, PLA100) are not compatible with the CR9000X, and therefore have been retired.
With several channel types, the CR9000X is compatible with many sensors, including thermocouples and 4 to 20 mA sensors.
Measurement and control peripherals typically used with the CR9000X are our AM25T 25-Channel Solid State Multiplexer, SDM-CAN Interface, SDM-INT8 Eight Channel Interval Timer, and SDM-SIO4 Serial Input/Output Module. Other measurement and control peripherals are compatible but they do not support the CR9000X datalogger's maximum measurement rate and are therefore impractical for most CR9000X applications.
The CR9000X typically communicates with a PC via direct connect or Ethernet. Because the CR9000X has an on-board 10baseT/100baseT port, an Ethernet interface such as the NL201 is not required.
Storage capacity can be increased by using a PC or CompactFlash card. The CR9000X's PCMCIA card slot supports one Type I, Type II, or Type III PC Card or the CF1 adapter and one CompactFlash (CF) card.
The storage capacity of Type II cards exceeds 1 GB. Type III cards provide data storage capacities exceeding 1 GB but may not be suitable for all environments. Campbell Scientific offers several CF cards that have passed our ESD testing and operate properly with our data loggers (see Ordering tab). Please note that the PCMCIA and CompactFlash cards need to be industrial-grade and have a storage capacity of 2 GB or less.
Other communication peripherals are compatible but they do not support the CR9000X datalogger's maximum measurement rate and are therefore impractical for most CR9000X applications.
Two enclosures are offered for the CR9000X. The 8253 fiberglass environmental enclosure is designed for field applications where the enclosure will be exposed to the elements. The 8255 lab enclosure is for applications where the CR9000X will reside inside a building.
CRBasic, the CR9000X's full programming language, supports simple or complex programming and many on-board data reduction processes. CRBasic is included in RTDAQ, LoggerNet, and PC400.
RTDAQ Real-Time Data Acquisition Software must be ordered separately; the CR9000X is also compatible with other Campbell Scientific software.
Current Operating System, Compiler and CR9000X support files for the CRBasic Editor. Requires the Device Configuration Utility, LoggerNet or RTDAQ to upload.
Use of this file will update the datalogger support files for the CRBasic Editor included in LoggerNet and RTDAQ.
Upgrade PC9000 version 5.0, 5.1, 5.2 or 5.3 to 5.3.1; no intermediate steps are required.
PC9000 5.0, 5.1, 5.2 or 5.3 must be installed on your machine.
Number of FAQs related to CR9000X: 44
Expand AllCollapse All
The CR9000X and CR9000XC differ only in the number of I/O cards they can hold. The CR9000X can hold 9 I/O cards, and the CR9000XC can hold 5 I/O cards. We provide both sizes to accommodate our customers; the same I/O cards can be used in either chassis.
The advantage of the BrHalf4W circuit is that the effect of lead resistance is measured and compensated for. The disadvantage is that it requires two differential (four single-ended) voltage input channels and four wires to the sensor.
Some sensors have four wires and are sensitive enough that the lead resistance would cause too great an error.
The BrHalf, a two-wire measurement, does not compensate for lead resistance.
The BrHalf3W lead compensation assumes that both leads are of the same resistance.
One of the simpler ways to approximate how long it will take for a data table to fill up is to open the LoggerNet Connect screen, click the Station Status button, and view the Table Fill Times tab.
There are two ways to upgrade an operating system:
Method 1
Method 2
The CRBasic Editor Help contains example program code for all instructions in the datalogger. Look for the Example link at the top of each instruction topic. The CRBasic Help Tutorial demonstrates how to access this and other online CRBasic Editor Help files.
Also, many programming examples can be found in the datalogger and sensor manuals that are available on the Campbell Scientific website.
Use the full-bridge instruction, BrFull(). An example program for the CR1000 can be found in the “Datalogger Programming” section of the “ST350 Strain Transducer Instruction Manual.”
If small amounts of data are transferred per transmission, it will not be a problem. Larger amounts of data can overrun buffers in the modem, causing lost data. In that situation, lower the baud rate on the datalogger to avoid the issue.
Yes, but only with a direct connection, such as an RS-232 cable or a USB-to-serial adapter. While connected to the datalogger, press the Send Program button on the Clock\\Program tab, and browse to the program file.
It is possible to upgrade the OS without downloading each OS version between the existing one on the datalogger and the most current one available. For example, a CR1000 can be upgraded directly from OS 14 to OS 25. However, when a large jump in OS versions is made, the upgrade will likely restructure the Status table and the Setting table, and they will need to be manually reloaded.
Note that in many instances, an OS update may not be necessary. Before updating, check the OS Revision History to see if a newer version would provide desired benefits.