ClimaVUE50 Compact Digital Weather Sensor
Complete Weather Sensor with No Moving Parts
Low power, compact, and simple for easy installation in remote locations
weather applications supported water applications supported energy applications supported gas flux & turbulence applications supported infrastructure applications supported soil applications supported

Overview

The ClimaVUE™50 is an affordable all-in-one meteorological sensor that fulfills your common weather monitoring needs with simplicity, when paired with one of the most flexible and scalable Campbell Scientific platforms. This sensor uses SDI-12 to report air temperature, relative humidity, vapor pressure, baro­metric pressure, wind (speed, gust, and direction), solar radiation, precipitation, and lightning strike (count and distance). It does this with no moving parts, while consuming little power. A built-in tilt sensor assures long-term data integrity. This diverse product is great for quick deployment, for remote locations, for large networks, as part of a more complex system, or if you just need something simple.

Read More

Benefits and Features

  • All the common meteorological measurements with one simple digital (SDI-12) output
  • Less than 1 mA at 12 Vdc average current, making it ideal for solar-powered sites
  • Integrated tilt sensor helps assure that the sensor stays level over time
  • Low maintenance—no moving parts significantly reduces maintenance cost and time
  • 304 stainless-steel hardware for minimal surface staining in marine environments
  • No sensor configuration required
  • Compact design for quick, low-impact installation
  • Compatible with all modern Campbell Scientific data loggers
  • Detachable cable facilitates field replacement

Images

Glam view
Glam view
Glam view
Front view
Front angle view with pole (sold separately)
Back view
Left view
Top view
Bottom view
ClimaVUE 50 mounted to a pole (sold separately)
Right view
ClimaVUE 50 mounted to a pole (sold separately)
ClimaVUE 50 with the cable and connector, mounted to a pole (sold separately)
Spectral response estimate of Apogee silicon-cell pyranometers. Spectral response was estimated by multiplying the spectral response of the photodiode, diffuser, and adhesive. Spectral response measurements of diffuser and adhesive were made with a spectrometer, and spectral response data for the photodiode were obtained from the manufacturer.

Technical Description

Sensors

All sensors are integrated into a single, small form-factor unit, requiring minimal installation effort. With a robust, no-moving-parts design that prevents errors because of wear or fouling, the ClimaVUE™50 is ideal for long-term, remote installations.

Pyranometer

Solar radiation is measured by a pyranometer that is integrated into the lip of the rain gage funnel at the top of the ClimaVUE™50. The miniature pyranometer uses a silicon-cell sensor to measure the total incoming (direct and diffuse) solar radiation. Silicon-cell sensors have excellent response time to changing radiation conditions and acceptable sensitivity across the solar spectrum, which make them well-suited for use on the ClimaVUE™50.

A carefully developed cosine-correcting head ensures accurate readings regardless of sun angle, while the painstakingly researched optical filter material balances cost and performance to ensure the silicon-cell provides the ClimaVUE™50 with good accuracy regardless of temperature or sensor age. 

Anemometer

The space underneath the rain gage is where the ClimaVUE™50 measures wind speed. Ultrasonic signals emitted from transducers at right angles to each other bounce off the porous sintered glass plate and back up to the opposite sensor. The speed of sound is affected by the wind, and the wind speed is calculated by measuring differences in the time it takes for sound to travel from the transmitters to the receivers.

Temperature Sensor

The ClimaVUE™50 temperature measurement is made in the center of the anemometer area where a small stainless-steel needle containing a tiny temperature sensor (thermistor) extends from the middle of the four sonic transducers in the center of the anemometer.

Unlike most air temperature measurements, the temperature sensor is not covered with louvered plates to protect it from solar heating. Instead, it sits in open air, susceptible to solar heating of the instrument body. However, the ClimaVUE™50 accurately corrects the measured air temperature because solar radiation and the wind speed are known. These two are the main variables that determine the error between measured air temperature and the actual air temperature. An energy balance equation is then used to calculate what the actual temperature should be to an accuracy of ±0.6°C. 

For more information, see the "ClimaVUE™50—Correction of air temperature measurements from a radiation-exposed sensor" technical paper.

Relative Humidity Sensor

The relative humidity sensor on the ClimaVUE™50 is located behind the circular Teflon™ screen close to the sonic transducers. The Teflon screen protects the sensor from liquid water and dust while allowing water vapor to freely pass to the sensor. The ClimaVUE™50 measures relative humidity and temperature and computes vapor pressure.

Drip Counter Rain Gage

The ClimaVUE™50 contains a 9.31 cm (3.67 in.) diameter rain-collection funnel. A spring in the funnel acts as a filter to keep out large particles while allowing enough flow so water does not back up. Rain collected by the funnel exits the funnel through a precision flared hole that forms the rain into drops of a known size. The falling drops hit and momentarily bridge the gap between two gold pins, creating an electrical pulse.  

The ClimaVUE™50 counts the pulses (drops) and calculates the water volume. As the rain intensity increases, the drops become smaller, but the ClimaVUE™50 firmware contains an algorithm to automatically compensate for drop size as the rain increases.

Note: This non-heated sensor is not suitable for solid precipitation measurements or riming environments.

Tilt Sensor

The ClimaVUE™50 is also equipped with a tilt sensor. The primary use of the tilt sensor data is to ensure the ClimaVUE™50 remains level at all times. Regularly check X and Y tilt data to ensure the ClimaVUE™50 is level; if it has tilted, return to the site and level again. Three degrees off level can cause errors in the rain and solar radiation measurements. Although this sensor's readings may be used to level the instrument during installation, it is much easier to use the small bubble level on the bottom of the anemometer plate.

Mounting

The ClimaVUE™50 includes a V-bolt for mounting to a pipe with a nominal outer diameter of 31.8 to 50.8 mm (1.25 to 2.0 in.). This allows the sensor to mount directly to a tripod mast or CM300-series mounting pole, or to a crossarm using the 17387 mounting pipe kit.

Aspen 10-Compatible IoT Solution

The ClimaVue 50 can be paired with the Aspen™10 Internet of Things (IoT) Edge Device. To get next-gen IoT solutions for advanced meteorological monitoring, click the image below:

ClimaVUE 50 + Aspen 10 Solutions

Specifications

Measurements Made Air temperature, barometric pressure, lightning average distance, lightning strike count, precipitation, relative humidity, solar radiation, tilt, wind direction, and wind speed.
Output SDI-12
Operating Temperature Range -50° to +60°C (Except the barometer and RH: -40° to +60°C.)
Minimum Supply Voltage 3.6 Vdc continuous
Maximum Supply Voltage 15.0 Vdc continuous
Minimum Digital Input Voltage
  • 2.8 V (logic high)
  • -0.3 V (logic low)
Typical Digital Input Voltage
  • 3.0 V (logic high)
  • 0.0 V (logic low)
Maximum Digital Input Voltage
  • 5.5 V (logic high)
  • 0.8 V (logic low)
Typical Measurement Duration 110 ms
Maximum Measurement Duration 3,000 ms
Maximum Polling Frequency 10 s
Application of Council Directive(s)
  • 2011/65/EU: Restrictions of Substances Directive (RoHS2)
  • 2014/30/EU: Electromagnetic Compatibility Directive (EMC)
Standards to Which Conformity Is Declared
  • EN 61326-1:2013: Electrical equipment for measurement, control and laboratory use—EMC requirements—for use in industrial locations
  • EN 50581:2012: Technical documentation for the assessment of electrical and electronic product with respect to the restriction of hazardous substances
Connection Description 25 mm (10 in.) pigtail with M12 male 5-pin 316 stainless-steel knurl
Diameter 10 cm (4 in.) including rain gage funnel
Height 34 cm (13.4 in.) including rain gage funnel

Power Consumption

Quiescent 0.3 mA
Maximum Peak Current 33 mA
Average Using the R7! Command every 10 s 1.0 mA
Average Using the R7! Command every 60 s (or slower) 0.4 mA

Air Temperature

Measurement Range -50° to +60°C
Resolution 0.1°C
Accuracy ±0.6°C

Relative Humidity

Measurement Range 0 to 100%
Resolution 0.1
Accuracy ±3% RH typical (varies with temperature and humidity)

Barometric Pressure

Barometer Operating Temperature Range -40° to +60°C
Measurement Range 500 to 1100 hPa
Resolution 0.1 hPa
Accuracy
  • ±1 mb (over the range of -10° to +50°C)
  • ±5 mb (over the range of -40° to +60°C)

Vapor Pressure

Measurement Range 0 to 47 kPa
Resolution 0.01 kPa
Accuracy or Repeatability Varies with temperature and humidity; ±0.2 kPa typical below 40°C.

Wind Speed

Wind Speed Maximum 10 s gust
Measurement Range 0 to 30 m/s (0 to 67 mph)
Resolution 0.01 m/s (0.02 mph)
Accuracy or Repeatability 0.3 m/s or 3% (0.67 mph or 3%), whichever is greater

Wind Direction

Measurement Range 0° to 359°
Resolution
Accuracy ±5°

Solar Radiation

Measurement Range 0 to 1750 W m-2
Resolution 1 W m-2
Accuracy ±5% of measurement (typical)
Spectral Range 300 to 1150 nm

Precipitation

Measurement Range 0 to 400 mm/h (15.75 in./h)
Resolution 0.017 mm
Accuracy ±5% of measurement (from 0 to 50 mm/h or 0 to 1.97 in./h)

Tilt

Measurement Range -90° to +90°
Resolution 0.1°
Accuracy ±1°

Lightning Strike Count

Measurement Range 0 to 65,535 strikes
Resolution 1 strike
Accuracy > 25% detection at < 10 km typical (variable with distance)

Lightning Average Distance

Measurement Range 0 to 40 km (0 to 24.9 mi)
Resolution 3 km (1.86 mi)
Accuracy Variable

Compatibility

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Dataloggers

Product Compatible Note
Aspen 10
CR1000 (retired)
CR1000X
CR300 (retired)
CR3000 (retired)
CR310
CR350
CR6
CR800 (retired)
CR800 (retired)
CR800 (retired)
CR850 (retired)
CR850 (retired)
CR850 (retired)
CR850 (retired)

Downloads

ClimaVue 50 Example Program v.1 (3 KB) 08-07-2021

An example CR1000X program that uses the R7! SDI-12 command to retrieve data. The program adjusts the barometric pressure measurement to sea level. The adjustment is entered as a constant in the beginning of the program. It assumes the site elevation is 1382 m, and a different value is required for different site elevations.

This program also includes instructions that set wind measurements that are less than 0 to the last valid measurement. These instructions are needed because high winds with rain can temporarily interfere with sonic wind measurements.

Related FAQs

Number of FAQs related to ClimaVUE50: 8

Expand AllCollapse All

  1. We do not have a heated version of the ClimaVue 50 at this time. The model to correct the air temperature is based on the energy balance and should be good in all situations in which the radiation and wind sensors can collect reliable data; however, unintentional burial in snow and ice may impede the function of both. The ClimaVue 50 will not be a universally great fit for all climates. If the winter precipitation is critical for your study, other instruments will be necessary.

  2. The ClimaVue 50 is a microclimate sensor, so you should position it to be representative of the climate relevant to the research questions you are asking. FAO56 gives specific guidelines to the positioning and field size of sensors. If you intend to use the sensor for reference ET, follow those guidelines. Refer to the following: http://www.fao.org/docrep/X0490E/X0490E00.htm.

  3. The ClimaVue 50 collects all the information necessary to correct for absorbed radiation using an energy balance approach.

  4. The average current drain for the ClimaVue 50 during the quiescent state and routine 10 s wind measurement is on the order of 300 µA. Polling with the aR7! command every 60 seconds increases the average current drain to 0.4 mA. Polling with the aR7! command every 10 seconds increases the average current drain to 1 mA.

  5. The SDI-12 bus is capable of having at least 10 sensors connected to it, each with 200 feet of cable. With fewer sensors, longer cable lengths are possible.

  6. See the maintenance section of the manual for recommendations.

  7. The ClimaVue 50 does need to be powered continuously to make the routine wind measurements (every 10 seconds) that are combined to give the wind speed and direction. If you only power up and quickly grab a measurement, those wind speed and direction measurements will be of little value, given the inherently variable nature of wind. Campbell Scientific highly recommends that you power the ClimaVue 50 instruments continuously for reliable wind measurement. The average current drain for the ClimaVue 50 during the quiescent state and routine 10 s wind measurement is on the order of 300 microAmps, so battery drain from continuous power should be minimal.

  8. The ClimaVue 50 mounting type can be a meteorological stand, pole in cement, or tripod: 31.8 to 50.8 mm, 1.25 to 2.0 in. diameter. The ClimaVue 50 is fitted with a V-bolt, allowing it to be mounted on top of most posts, poles, tripods, etc. Use a wrench to tighten the bolts, securing the ClimaVue 50 flat and tight against the top of the stand.

Case Studies

Portugal: Formula 1 Weather Monitoring
Overview In 2020, due to the COVID-19 pandemic, the Formula 1 World Championship calendar was subject......read more
South Africa: Microclimate Analysis
Solar energy is the most abundant clean energy source available on earth, but the intermittent......read more
United Kingdom: Observing Urban Climate
Summary Problem The University of Birmingham had set up and was operating 26 weather stations across the......read more